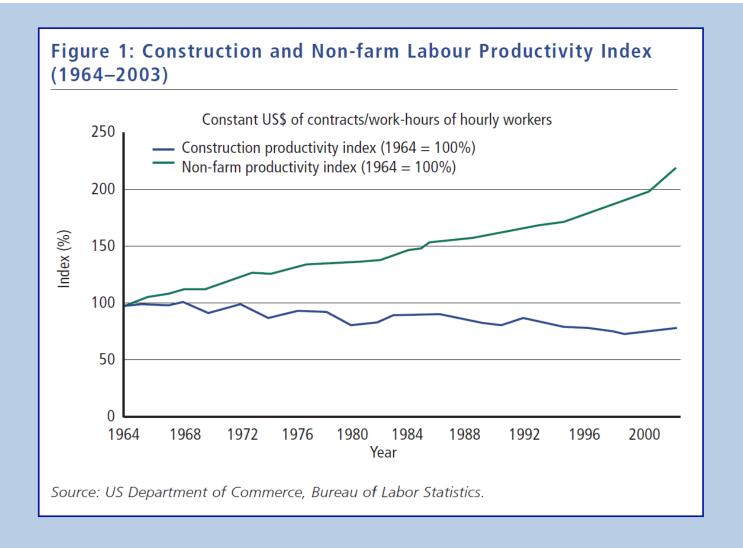
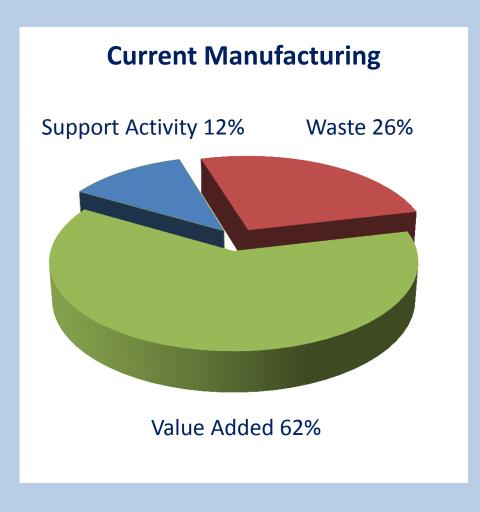


SAN DIEGO COMMUNITY COLLEGE DISTRICT

Getting to Lean Project Delivery in Public Higher Education Institutions



Presented to IFMA – AFC Spring Conference San Diego, CA – June 13, 2013


A World View - Extreme Lean!

Construction Productivity in the U.S.

Construction Waste in the U.S.

Construction Waste in the U.S.

Typical Types of Construction Waste:

- Rework
- Requests for Information
- Change orders
- Inadequate Resources
- Inefficient work flow
- Work arounds
- Multiple handling of material
- Excess material
- Waiting on supplies
- Waiting on another trade
- Safety losses
- Improper sequencing of work

Lean Construction

What is Lean Construction?

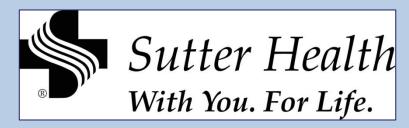
Shared principles:

- 1. Whole System Optimization through collaboration and systematic learning
- 2. Continual improvement/pursuit of perfection involving everyone in the system
- 3. A focus on delivering the value desired by the owner/client/end-user
- 4. Allowing value to flow by systematically eliminating obstacles to value creation and those parts of the process that create no value
- 5. Creating pull production

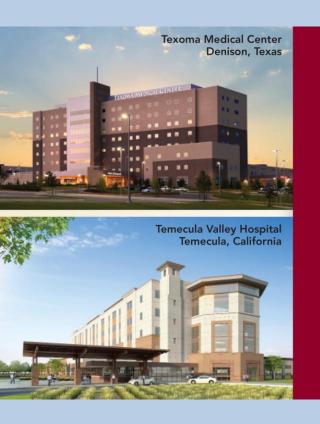
The priority for all construction work is to:

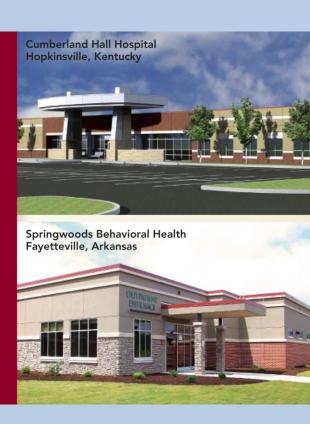
- 1. Keep work flowing so that the crews are always productive installing product
- 2. Reduce inventory of material and tools, and
- 3. Reduce costs

(From Wikipedia)


Lean Construction

Who is Going Lean?





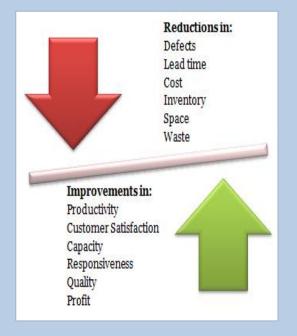
Why Go Lean?

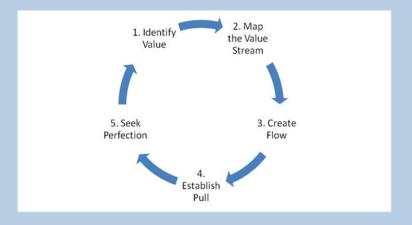
Why Go Lean?

(From UHS Lean Project Delivery Guide)

Fundamentals of Lean:

- To understand value from the customer's perspective and to only take actions which deliver that value (thus eliminating waste).
- Waste is disrespectful
 - 1. to humanity squanders scarce resources
 - 2. to individuals adds work
 - 3. to clients adds cost/time/aggravation
- Become a leaning organization through relentless reflection and continuous improvement as a team. Status quo is never acceptable.
- Lean is about inspiration and empowerment. People are empowered to affect decisions and the work itself which not only delivers better projects, but leads to heightened satisfaction for all.
- Lean is about developing *principles that are right for your* organization & diligently practicing them to achieve high performance. It is not about *imitating the tools used by* Toyota in a particular manufacturing process.


Lean Philosophies


Lean Philosophies

- Define customer value
- Identify and remove waste
 - Innovate and perfect

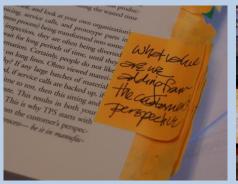
Value

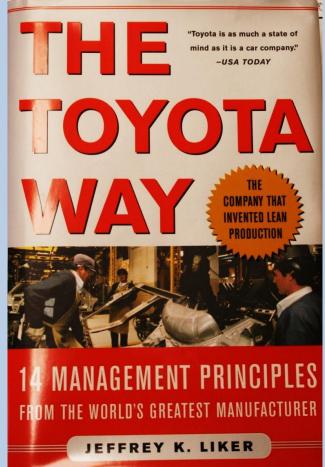
- Value is defined by the owner
 - Value is not cost

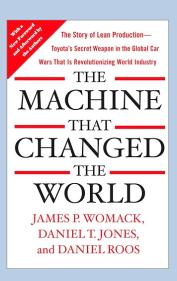
The Eight Wastes as Defined by Toyota (and Liker)

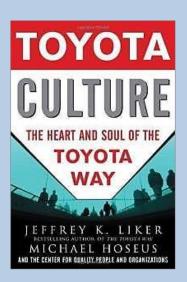
- 1. Overproduction
- 2. Waiting
- 3. Unnecessary transport
- 4. Overprocessing
- 5. Excess inventory
- 6. Unnecessary movement
- 7. Defects
- 8. Unused employee creativity

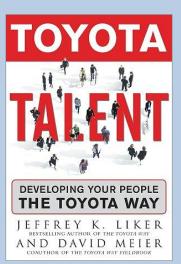
Why Did We Go Lean?

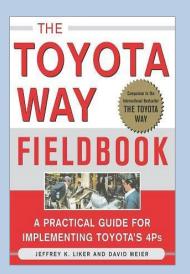

- Reduced operating budgets of \$46 million in past four years (-16%)
- Increased build environment footprint of 1.3 million square feet (+65%)
- Capital funding from locally approved and funded general obligation bonds
- Reduce waste, create greater value

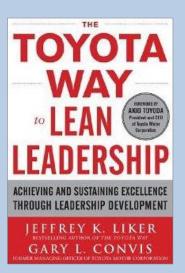

Practicing the Toyota Way Business Principles



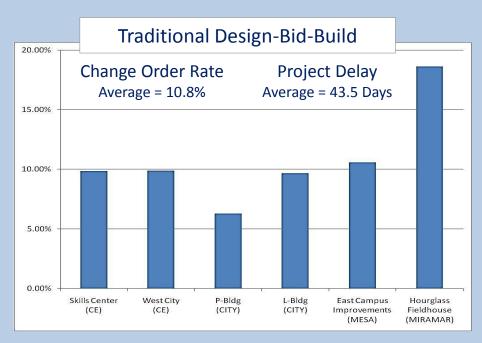


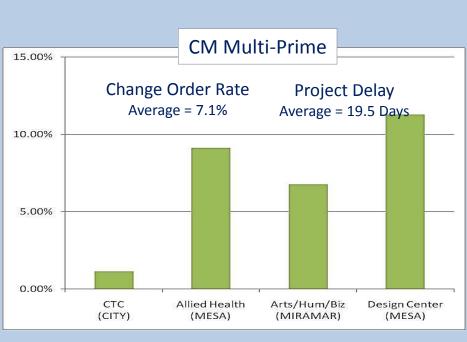



San Diego Community College District The Toyota Way Business Tools

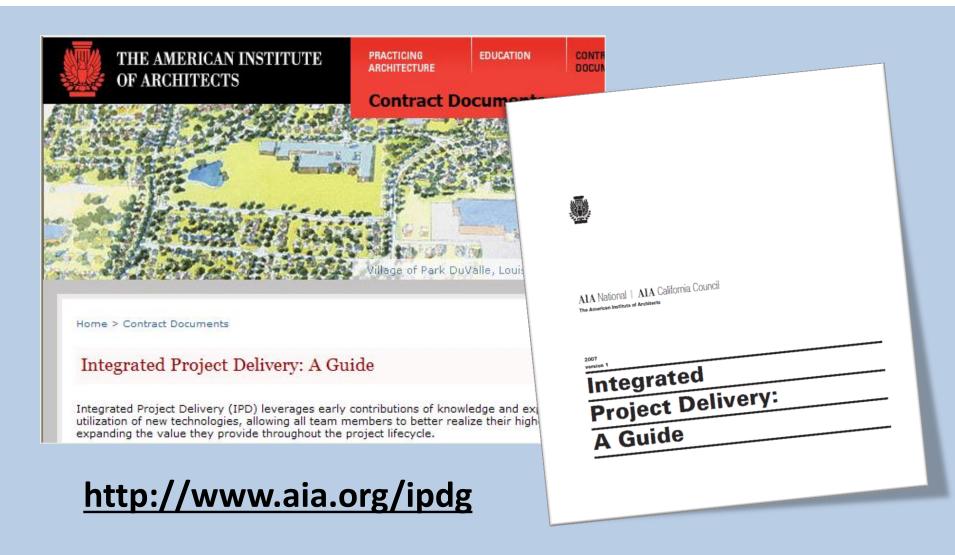

- The Machine that Changed the World James Womack
- The Toyota Way Jeffrey Liker

Early (and continued) Attitudes Toward Lean

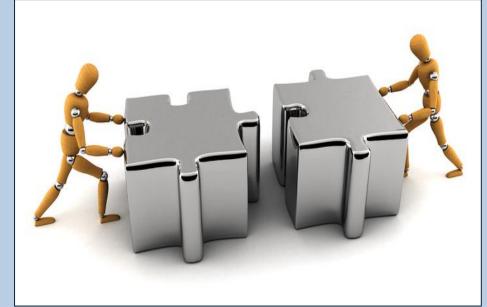



Credit: Lean Construction Institute

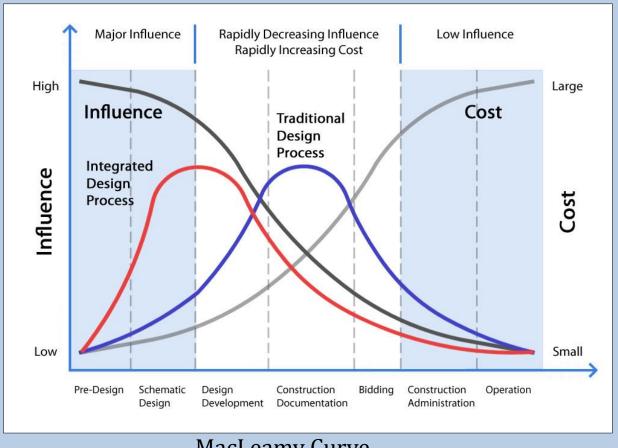
- We've tried that.
- We already do that.
- We don't need it.
- It won't work here.
- We don't build cars.
- We're different.
- The other guy needs it, not me.
- We're doing well, so why change?


Rainbow Report Contract Contract Manager Expenditures Construction Manager FFE DSA DSA Board Project Description Project Budget Prop. Campus Soft Cost Hard Cost Order Status Commitments to AV/IT as of 2011_06_30 Submit Approved Approval Complete as of 2011_08_12 Rate 2011_09_02 ECC - Land Acquisition & Relocation Skills Center (Land \$7.4M) 31,650,000 31,681,400 \$ 11,297,890 \$ 10,782,697 \$ 1,560,878 614,124 31,737,281 Jan-06 Oct-06 May-07 8.0 100% Aug-09 West City Campus 17,409,369 2.484.567 \$ 13,482,064 \$ 1,073,191 369,546 17,409,495 Oct-05 Nov-06 May-09 100% Cafeteria/Bookstore & Student/Campus Center 34,519,245 \$ 31,515,776 Miramar 8,475,465 Miramar Aviation Maintenance Technology Center 10,251,857 Parking Structure #1 & Police/Emergency Center \$ 16,608,677 Miramar 17,848,765 Infrastructure - Central Plant /Sewer & Storm Drain/ Data & IT City 19,441,050 \$ 17,017,141 projects Mesa Infrastructure - Fire Lane/Central Plant/IT/Stadium Restrooms \$ 8,127,797 \$ 9,637,103 \$ 17,108,101 Infrastructure Phase II 41,564,305 \$ Miramar District Proposition N Program Management 41,992,026 \$ 17,874,745 CE Fire Science / EMT Training Facility \$ \$ 1,774,354 13,000,000 \$ 14,369,196 City Science Building 54,014,278 Legend: Project Completed Construction Phase Design/Bid Phase Ongoing Future Projects

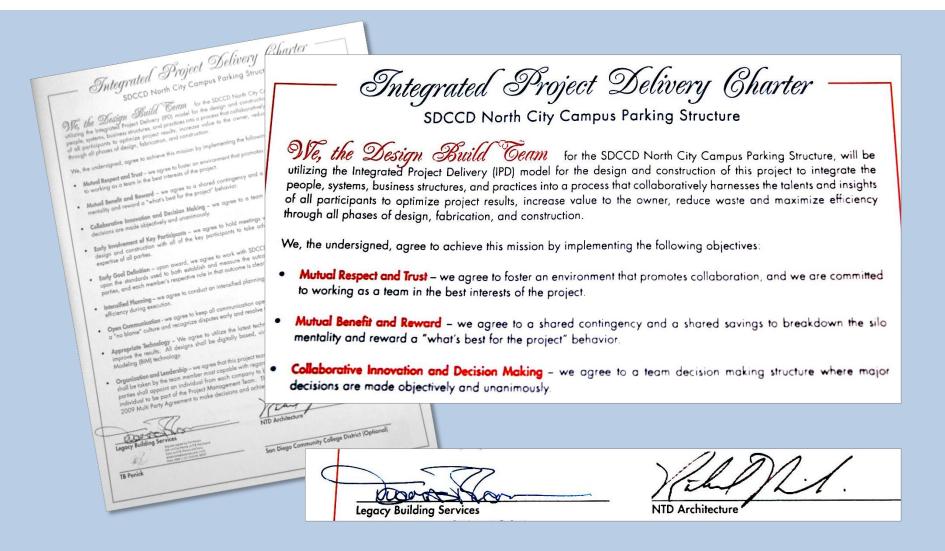
Schedule Performance


Integrated Project Delivery (IPD)

IPD - What Is It?


 Project delivery approach that integrates people, systems, business structures, and practices to optimize project results, increase value to the owner, reduce waste and maximize efficiency of project delivery.

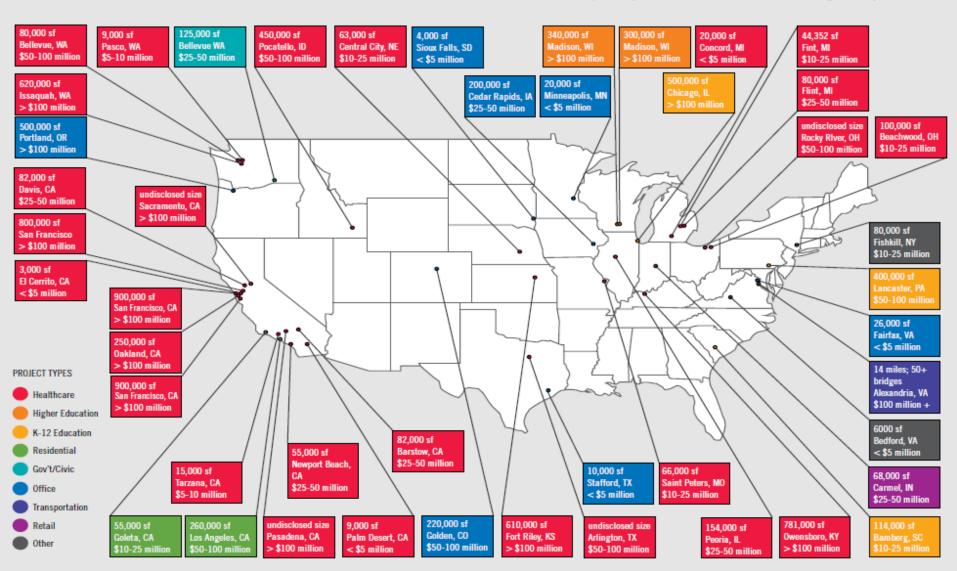
 Distinguished by highly effective collaboration among the owner, prime designer and prime constructor commencing at early design through project completion.



San Diego Community College District IPD – Why Do It?

An integrated design process allows decisions to be made early when the opportunity for change is maximized and the cost of changes are minimized.

Integrated Project Delivery Charter



IPD Programs in the United States

SEPTEMBER 2010 AIA SURVEY OF PROJECTS NOW USING OR PLANNING TO USE AN IPD AGREEMENT

Survey done for the AIA/AIA-MN/UMN 2011 IPD Case Studies www.aia.org/ipdcasestudies2011.

Map drawn by Kai Salmela under the direction of Renée Cheng, University of Minnesota

Design-Build Statute in California for Community Colleges

- As of January 1, 2008, CommunityColleges can use design build under SB614.
 - Must be at least \$2.5M in value
 - Requires project-specific Board resolution
- Need to evaluate the project based on five minimum criteria.
 - Price (10%)
 - Technical Experience (10%)
 - Life cycle cost over 15 years (10%)
 - Skilled Labor Force (10%)
 - Safety Record (10%)

Design-Build Scoring Criteria and Weight

	1	2	3	4	5	6	7		
	TECHNICAL Expertise / 202	DESIGN Excellence/ 202	LIFE CYCLE COST/ 102	SKILLED LABOR FORCE AVAILABILITY/ 102	PRICE/ 202	COMMITMENT TO DIVERSITY/ 102	SAFETY RECORD / 102	TOTAL	RANK
Point Value	200	200	100	100	200	100	100	1000	
FIRM									
Balfour Beatty	193	190	90	100	200	77	100	950	1
McCarthy Construction	198	193	96	100	180	76	85	928	2
Hensel Phelps	188	188	85	100	180	82	95	918	3
TB Penick	183	178	95	100	180	74	95	904	4
PCL Construction	174	171	92	100	180	82	100	899	5
Davis Reed Construction	156	171	86	100	200	75	90	878	6
Swinerton	164	173	80	100	160	93	100	870	7
Rudolph and Sletten	166	174	78	100	190	76	85	869	8
Turner Construction	171	178	73	100	160	74	100	856	9
Harper	158	164	75	100	180	67	95	839	10
Tilden-Coil	171	148	68	100	180	69	100	836	11
CV Driver	174	175	91	100	180	0	100	820	12

Mesa College Fitness Center Project

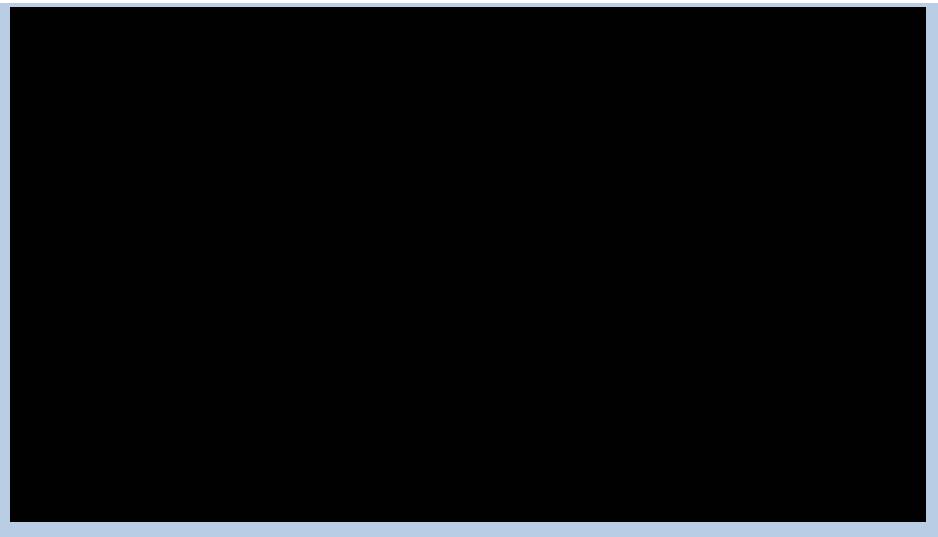
San Diego Community College District Schedule Performance

Is Critical Path Scheduling Obsolete?

San Diego Community College District Schedule Performance

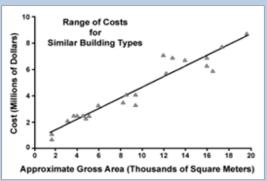
- SDCCD Experience:
 30 Major Projects with CPM Scheduling
 3 (10%) finished on time
- Research by Glenn Ballard and Greg Howell indicated only 54% of planned weekly activities get completed.
- LastPlanner pull system a better way (typically 80-90% percent promises kept)

Pull Planning





Pull Planning


Pull Planning Workshop

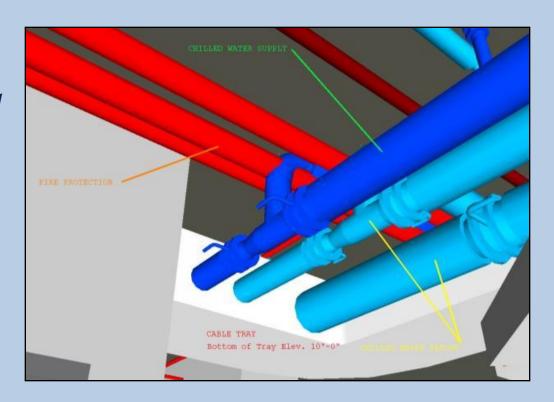
Target Costing – Project Budget Development

- Space Programming
- Efficiency
- Targeted Cost Per Sq. Ft.

	SPACE DESCRIPTION		Quantity	Extended 2024 ASF	Extended 2007 ASF	Variance	2007 Room Nos., Commen
	32-Seat Dry Lecture/Lab-Biology	1,600	x 1.0	1,600	836	764	supplements A202
	32-Seat Wet Lab-Biology/Botany	1,728	x 1.0	1,728	1,092	636	supplements A210
w	32-Seat Wet Lab-Biotech/Microbiology	1,728	x 3.0	5,184	2,048	3,136	supplement A204, A231
Sciences	32-Seat Wet Lab-Physiology/Anatomy	1,728	x 3.0	5,184	1,834	3,350	supplement A226, A206
ē	32-Seat Lecture/Dry Lab-Life Science (computer)	1,600	x 1.0	1,600	1,053	547	supplements A207
Sc	Prep/Stg/Lab Tech Rm (1 per 2 wet labs; 7 wet labs total)	800	x 4.0	3,200	1,232	1,968	supplement A203, A205, A226A
Life	Storage	1,200	x 1.0	1,200	0	1,200	supplements A206A, A209, A211
7	Marine Biology/Oceanography Lab	500	x 1.0	500	0	500	Aquarium
	Microbiology Culture/Autoclave Room	200	x 1.0	200	0	200	
	Biology/Anatomy Dissection Room	200	x 1.0	200	0	200	
	32-Seat Wet Lab-Chemistry	1,728	x 4.0	6,912	3,018		M201, M202, M203
	Chemistry Lab Instrument Room (1 per 2 labs)	250	x 2.0	500	180	320	M220
(C)							IVI ALIAN O
ces	Chem. Prep/Storage/Lab Tech Rm (1 per 2 labs)	800	x 2.0	1,600	1,337	263	M216, M217, M218
PIC		800 175	x 2.0 x 1.0		1,337 120		
Scienc	Chem. Prep/Storage/Lab Tech Rm (1 per 2 labs)		x 1.0	1,600		55	M216, M217, M218
sical Science	Chem. Prep/Storage/Lab Tech Rm (1 per 2 labs) Hazardous Chemicals Storage Room 32-Seat Lecture/Dry Lab-Physics, Physical	175	x 1.0 x 4.0	1,600 175	120	55	M216, M217, M218 M219 M204, M205
Scienc	Chem. Prep/Storage/Lab Tech Rm (1 per 2 labs) Hazardous Chemicals Storage Room 32-Seat Lecture/Dry Lab-Physics, Physical Science, Geography, Geology	1,600	x 1.0 x 4.0 x 1.0	1,600 175 6,400	120	4,386 2,000	M216, M217, M218 M219 M204, M205
sical Science	Chem. Prep/Storage/Lab Tech Rm (1 per 2 labs) Hazardous Chemicals Storage Room 32-Seat Lecture/Dry Lab-Physics, Physical Science, Geography, Geology 40-Seat Lecture/Dry Lab-Geography Physics/Physical Science/Astronomy Prep/Stg/Lab	1,600 2,000	x 1.0 x 4.0 x 1.0	1,600 175 6,400 2,000	2,014 0	4,386 2,000	M216, M217, M218 M219 M204, M205 M214, M215, M215A
sical Science	Chem. Prep/Storage/Lab Tech Rm (1 per 2 labs) Hazardous Chemicals Storage Room 32-Seat Lecture/Dry Lab-Physics, Physical Science, Geography, Geology 40-Seat Lecture/Dry Lab-Geography Physics/Physical Science/Astronomy Prep/Stg/Lab Tech Rm	1,600 2,000 1,600	x 1.0 x 4.0 x 1.0 x 1.0 x 2.0	1,600 175 6,400 2,000	2,014 0	4,386 2,000 541	M216, M217, M218 M219 M204, M205 M214, M215, M215A

BIM Standards

http://public.sdccdprops-n.com/Design/SDCCD%20-%20Building%20Design%20Standards/SDCCD%20BIM%20Standards%20Version%202.pdf


BIM Clash Detection

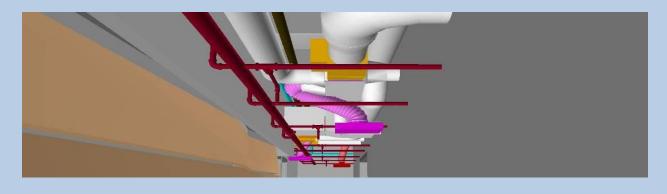
Building Construction

Mechanical piping hits cable tray and fire protection piping in ceiling space

Survey Average Results

- *Man-hour Savings* = 61
- Delay Savings = 3 Days
- **■** *Cost Savings* = \$30,349.00

- Number of Clashes Shown in Example = 9
- Savings per Clash Resolved = \$3,372.00


Change Order Metrics – BIM vs. No BIM

Change Orders

Errors & Omissions Total

BIM: 1.1% 4.1%

No BIM 3.3% 8.6%

Schedule Impacts – BIM vs. No BIM

Average Days of Delay

BIM: 24.5

No BIM: 79.6

San Diego Community College District BIM Integration: Mesa College Social & Behavioral Sciences Building

MacLeamy - Buildings Are Assembled Not Built

Off-site Fabrication Trends

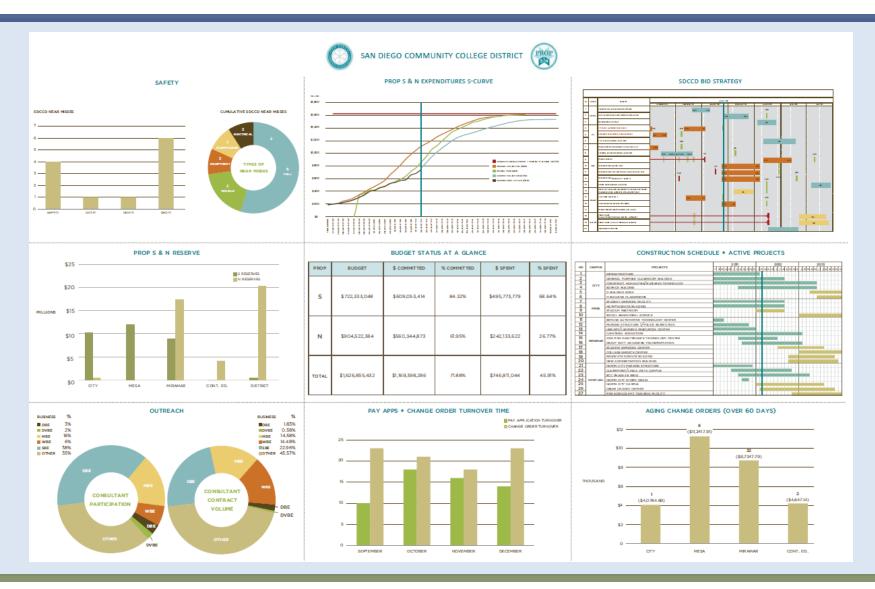
Exterior skin - Mesa College Math & Science Building

Columns and Double Ts - City College Arts & Humanities Building

Off-site Pre-Fabrication Trends

Mechanical systems off-site racking – Mesa College Math & Science Building

Off-site Pre-Fabrication Trends


Pre-fabrication warehouse - University Mechanical & Engineering

Off-site Pre-Fabrication Trends

Program A3 Report

Questions?

David Umstot, PE Vice Chancellor, Facilities Management

San Diego Community College District

dumstot@sdccd.edu

(619) 388-6546