# Energy Management in Academic Foodservice using Demand-Controlled Ventilation (DCV)

David Reynolds, Business Development Manager Halton Group - Foodservice Division www.haltoncompany.com



# Why are Campus Kitchens Overlooked for Energy Efficiency?

- Not always the Facility Manager's responsibility?
  - Is Kitchen area managed by Foodservice Contractor?
- Excess (Wasted) air is "invisible"
  - Usually not monitored or managed because it is undetected loss
  - Can reduce both Electric & Gas bills WHY?
    - Make-up Air (MUA) usually heated or cooled (Costly air replacement !!!)
  - Kitchens: Negative pressure" designs (Pulls bldg. air to kitchen)
    - Additional MUA supplied from Office/ Open area HVAC system
- Kitchen energy isn't directly monitored or separated on bill
  - Implement sub-metering to define actual usage in space
  - Less Exhaust air = Less Make-Up Air (MUA) required
    - If excess Exhaust CFM controlled, then Supply (MUA) reduced to match

## Kitchen Energy - Overproduction!

- Existing kitchen hoods used much higher design exhaust CFM/per lineal ft. standards
  - Estimate: 20% higher CFM's (very inefficient vs. current day !!!)
  - More efficient kitchen hood design parameters are used today
  - **Retrofit kits** can reduce <u>existing</u> overall kitchen exhaust CFM's
- M.E. firms generally **add a "safety factor"** to roof fan H.P. sizing assuring good ventilation in kitchen space (no smoke)
  - Estimate: 10 25% depending on the project/application
  - Be Aware: New **ASHRAE 90.1 (2010) code standards** will limit/reduce the CKV Exhaust CFM's allowed in new facilities
    - Won't affect existing kitchens, but shows importance on energy focus
    - For New Construction/ Renovation Kitchens (over 5,000 CFM)
      - CKV "energy saving options" will be required (e.g. choice of DCV)

# "Typical" Commercial Kitchen energy consumption footprint



Cooler Freezer & other

Lighting

- Buildings with commercial kitchens are one of the highest energy consumers of all building types
- HVAC (CKV) &
   kitchen equipment
   contribute up to
   80% of total dining
   service building
   energy consumption



- Utilize "Whole Building Design" approach
- Design efficient HVAC (CKV) system
  - Minimize kitchen hoods exhaust airflow
    - Use High Efficiency Kitchen exhaust hoods
    - Use Demand Controlled Ventilation (DCV)
- Select efficient Kitchen equipment
  - Energy efficient cooking equipment is available
    - "Energy Star" models
      - Both Gas and Electric models
      - Lower BTU or KW inputs

## DCV - Adaptable to most Kitchens

- DCV (Demand Controlled Ventilation) is an automatic control system that regulates (and balances) the kitchen hood exhaust and make-up airflow based on demand from cooking process
- Supplies the right amount of energy, at the right time, and right when and where it's needed
- Kitchens > 5,000 CFM: DCV usually has effective ROI

| Appliance status | Hood status                                                    |  |
|------------------|----------------------------------------------------------------|--|
| COOKING          | Operates at <b>Maximum design airflow</b> (Exhaust CFM)        |  |
| IDLE             | Modulates <b>BELOW</b> Max. design airflow (reduced by 20-50%) |  |
| OFF -            | Off (No hood airflow)                                          |  |

# DCV - System Models

- Exhaust Temperature + Cooking Activity Sensor
- Two types of DCV cooking activity sensors available
  - 1) Infrared **light beam** across the hood to **detect visible smoke or steam** associated with the beginning of cooking process
  - 2) Infrared array **temperature sensors** continuously **monitor surface temperature** of appliances under the hood
  - Minimum exhaust fan speed default = 60% of design exhaust airflow
  - Option: Single Hood VS. Multiple Hood on Common Fan/ Ductwork

#### Temperature Only

- Minimum exhaust fan speed default = 80% of design exhaust airflow for systems with constant exhaust temperature set-point
- **Delayed responsiveness** with temperature sensor only at duct collar and **no secondary activity-sensor** capability
  - If DCV has constant Exhaust Temperature Set-point (Variable)
    - Settings must be adjusted from Winter to Summer months

# DCV - Control Systems types

- Energy Management Control Systems (EMS)
  - Energy controls monitoring a specific area/ function
  - Sub-metering required for optimal energy management
- "Building Automated System" (BAS)
  - Integrated systems approach for multiple EMS control systems in the building
  - DCV systems can usually be integrated easily
    - BACnet, Modbus, and LonWorks are common protocols used
  - List of monitored "Control Points" (Metrics) supplied to Architect (Design Team) in design process assures BAS control wiring diagrams are complete

### DCV Systems = Calculation Data

- HEAT Example (Energy Savings Analysis Software)
- Data Inputs
  - Weather City
  - Hours of Operation: Hrs/Day Days/Wk Wks/Year
  - Energy Costs: Electric and Gas
  - CKV System: Design CFM Exhaust/ Make-up Air requirements
  - Costs: Ventilation System (Kitchen Hoods & DCV system control)
  - Energy Modeling Schedules by Market

#### Report Calculates Annual Energy Savings

- Electric Energy Reduction (kWh/per year) = \$\$\$
- Gas Energy Reduction (Therm/ per year) = \$\$\$
- Greenhouse Gas Reduction (Lbs. of CO<sub>2</sub>)
- TOTAL PAYBACK SAVINGS (ROI) = \$\$\$
- Used as Utility Energy Rebate Submission support documents

# **DCV** Case Study

- Evaluated Site Configuration
  - Four canopy hoods attached to single exhaust fan
  - Demand control ventilation (DCV) installed
  - Design Exhaust Airflow = 11,290 CFM
  - Balancing dampers installed on each hood to independently regulate exhaust proportional to "actual" cooking demand





#### **DCV CONTROLS YIELD BIG SAVINGS!**

| Energy Impacts           | Estimated Savings |            |             |            |  |
|--------------------------|-------------------|------------|-------------|------------|--|
| Kitchen Hood             | Heating           | Cooling    |             |            |  |
| System w/ Single         | [Therms]          | [kWh]      | Exhaust Fan | Supply Fan |  |
| Roof Fan/Duct            | \$1.20/Therm      | \$0.12/kWh | [kWh]       | [kWh]      |  |
| DCV w/ Dampers           |                   |            |             |            |  |
| (Individual Hoods)       | 1,307             | 7,425      | 38,075      | 12,692     |  |
| DCV w/o Dampers          |                   |            |             |            |  |
| (All Hoods operate       |                   |            |             |            |  |
| as Total System)         | 436               | 2,475      | 15,705      | 5,235      |  |
|                          |                   |            |             |            |  |
| <b>Energy Difference</b> | 871               | 4,950      | 22,370      | 7,457      |  |
| <b>Energy Cost</b>       |                   |            |             |            |  |
| Savings/YEAR             | \$1045            | \$594      | \$2684      | \$895      |  |

# **Energy Systems require Routine Preventative Maintenance**

- After installation, HVAC/ CKV systems should be "optimized" by DCV manufacturer and/or BAS - Controls contractor
  - **Start-up:** Assures installation per M.E. design specification
- Energy management system (EMS) monitor/control sensors require occasional "system" checks to assure proper operation
  - Operation: "Monitoring" does not equate to "Control"
  - Routine calibration is recommended to assure maximum energy savings and comfortable working/dining conditions all day
- Automatic DCV controls **detect system "weakness"** in HVAC
  - Reduces overall costs because "Emergency Fixes" cost more than "Preventative Maintenance" solutions
  - Examples: Roof fan issues, Ducts, Space Temp. "spikes", etc.

# **Summary of Key Points**

- MOST CAMPUS KITCHENS AREN'T MONITORED
  - COMMERCIAL KITCHENS ARE <u>HUGE</u> ENERGY CONSUMERS
  - "SUB-METERING" ALLOWS SPACE ENERGY MONITORING
- "DEMAND CONTROLLED VENTILATION (DCV)
  - MATCHES ENERGY USAGE = ENERGY REQUIRED
- ENERGY MANAGEMENT: EMS & BMS/BAS SYSTEMS
  - ENERGY MONITORING IS <u>NOT</u> ENERGY MGMT.
    - SET "CONTROL" POINTS FOR BMS/BAS SYSTEM (METRICS)
- SAVE BOTH MONEY & TIME OVER TIME
  - ROUTINE PREVENTATIVE MAINTENANCE A "MUST"
  - TURNS "EMERGENCIES" INTO "SCHEDULED" MAINTENANCE

#### **COLLEGE & UNIVERSITY - DCV SITES**

Dartmouth College\*

Francis Tuttle –Culinary\*

Oklahoma University\*

Bellingham Technical College\*

Whitworth University\*

Harvard GSE\*

Univ. of Saint Thomas\*

University North Dakota\*

Western Kentucky Univ.\*

SDCCD (Miramar College)\*

\* Real-time Internet Monitoring (including alarms sent to Facilities staff)

\* First Year Monitoring included with new MARVEL system

\* Requires Annual Energy Monitoring contract (HGS)

Boston College

University of Colorado

UCSD-Stuart Commons

UCLA-South Campus

Univ. of Hawaii -West Oahu

George Brown College

University of Wisconsin

Colorado College

Oklahoma State Univ.

St. Johns University

Berklee - College of Music

**McMasters University** 

# **Questions?**

#### David Reynolds Business Development Manager

www.haltoncompany.com dave.reynolds@halton.com

